Topic of this homework: Prime numbers, greatest common divisors, pythagorean triples Deliverable: Answers to questions.

1 Prime numbers

1. According to the fundamental theorem of arithmetic, every integer may be written as a product of primes.
(a) Put the numbers $1,000,000,1,000,004$ and 999,999 in the form $N=\prod_{k} \pi_{k}^{m_{k}}$ (you may use Matlab to find the prime factors).
(b) Give a generalized formula for the natural logarithm of a number N in terms of its primes π_{k}.
2. Prime numbers may be identified using 'sieves'
(a) By hand, perform the sieve Eratosthenes for $n=1 \ldots 49$. Circle each prime p then draw a slash through each number which is a multiple of p.
(b) In part (a), which is the highest number you need to consider before all primes have been identified?
(c) Generalize: for $n=1 \ldots N$, which is the highest number you need to consider before all primes have been identified?

2 Greatest common divisors

Consider Euclid's algorithm to find the greatest common divisor (GCD; the largest common prime factor) of two numbers

1. Understand Euclid's algorithm
(a) Use the Matlab command factor to find the prime factors of $a=85$ and $b=15$. What is the greatest common prime factor of these two numbers?
(b) By hand, perform Euclid's algorithm for $a=85$ and $b=15$.
(c) By hand, perform Euclid's algorithm for $a=75$ and $b=25$. Is the result a prime number?
(d) Describe in your own words how the GCD algorithm works. Try the algorithm using numbers which have already been separated into factors (e.g. $a=5 \cdot 3$ and $b=7 \cdot 3$).
2. Write a matlab function, function $x=\operatorname{my} \quad \operatorname{gcd}(a, b)$ which uses Euclid's algorithm to find the GCD of any two inputs a and b. Test your function on the (a, b) combinations from parts (a) and (b). Include a printout (or handwrite) your algorithm to turn in.

Hints and advice:

- Don't give your variables the same names as Matlab functions! Here, gcd is an existing function, so if you use it as a variable or function name, you won't be able to use gcd to check your own function. Try clear all if you accidentally do this.
- Try using a 'while' loop for this exercise (see Matlab documentation for help).
- You may need to make some temporary variables for $a \operatorname{and} b$ in order to perform the algorithm.

3 Pythagorean triples

Euclid's formula for the Pythagorean triples gives $a=p^{2}-q^{2}, b=2 p q$, and $c=p^{2}+q^{2}$.

1. What condition(s) must hold for p and q such that a, b, and c are always positive and nonzero?
2. Solve for p and q in terms of a, b and c. Hint: you don't need to use b.
3. Consider Figure 1.3 of Stillwell. Find p and q for the first five (a,c) pairs in Plimpton 322.
4. Set $n=p-q$, and find a relationship between $\sqrt{b+c}$, a, and n (you may wish to start by finding new equations for the pythagorean triples involving q and n). Is $b+c$ always a perfect square? What condition on n and a is necessary for $b+c$ to be a perfect square?
